数仓分层
数据分层是数据仓库设计中一个十分重要的环节,良好的分层设计能够让整个数据体系更容易被理解和使用。本文介绍的是如何理解数据仓库中各个分层的作用。
图解数据分层
何为数仓DW
Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是一整套包括了etl、调度、建模在内的完整的理论体系。数据仓库的方案建设的目的,是为前端查询和分析作为基础,主要应用于OLAP(on-line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。目前行业比较流行的有:AWS Redshift,Greenplum,Hive等。数据仓库并不是数据的最终目的地,而是为数据最终的目的地做好准备,这些准备包含:清洗、转义、分类、重组、合并、拆分、统计等
为何要分层
数据仓库中涉及到的问题:
- 为什么要做数据仓库?
- 为什么要做数据质量管理?
- 为什么要做元数据管理?
- 数仓分层中每个层的作用是什么?
- ……
在实际的工作中,我们都希望自己的数据能够有顺序地流转,设计者和使用者能够清晰地知道数据的整个声明周期,比如下面左图。但是,实际情况下,我们所面临的数据状况很有可能是复杂性高、且层级混乱的,我们可能会做出一套表依赖结构混乱,且出现循环依赖的数据体系,比如下面的右图。为了解决我们可能面临的问题,需要一套行之有效的数据组织、管理和处理方法,来让我们的数据体系更加有序,这就是数据分层。数据分层的好处:
- 清晰数据结构:让每个数据层都有自己的作用和职责,在使用和维护的时候能够更方便和理解
- 复杂问题简化:将一个复杂的任务拆解成多个步骤来分步骤完成,每个层只解决特定的问题
- 统一数据口径:通过数据分层,提供统一的数据出口,统一输出口径
- 减少重复开发:规范数据分层,开发通用的中间层,可以极大地减少重复计算的工作
数据分层
每个公司的业务都可以根据自己的业务需求分层不同的层次;目前比较流行的数据分层:数据运营层、数据仓库层、数据服务层。
数据运营层ODS
数据运营层:Operation Data Store 数据准备区,也称为贴源层。数据源中的数据,经过抽取、洗净、传输,也就是ETL过程之后进入本层。该层的主要功能:
- ODS是后面数据仓库层的准备区
- 为DWD层提供原始数据
- 减少对业务系统的影响
为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可这层的数据是后续数据仓库加工数据的来源。数据来源的方式:
- 业务库:sqoop定时抽取数据;实时方面考虑使用canal监听mysql的binlog日志,实时接入即可
- 埋点日志:日志一般是以文件的形式保存,可以选择使用flume来定时同步;可以使用spark streaming或者Flink、Kafka来实时接入
- 消息队列:来自ActiveMQ、Kafka的数据等
数据仓库层
数据仓库层从上到下,又可以分为3个层:数据细节层DWD、数据中间层DWM、数据服务层DWS。
数据细节层DWD
数据细节层:data warehouse details,DWD该层是业务层和数据仓库的隔离层,保持和ODS层一样的数据颗粒度;主要是对ODS数据层做一些数据的清洗和规范化的操作,比如去除空数据、脏数据、离群值等。为了提高数据明细层的易用性,该层通常会才采用一些维度退化方法,将维度退化至事实表中,减少事实表和维表的关联。
数据中间层DWM
数据中间层:Data Warehouse Middle,DWM;该层是在DWD层的数据基础上,对数据做一些轻微的聚合操作,生成一些列的中间结果表,提升公共指标的复用性,减少重复加工的工作。简答来说,对通用的核心维度进行聚合操作,算出相应的统计指标
数据服务层DWS
数据服务层:Data Warehouse Service,DWS;该层是基于DWM上的基础数据,整合汇总成分析某一个主题域的数据服务层,一般是宽表,用于提供后续的业务查询,OLAP分析,数据分发等。一般来说,该层的数据表会相对较少;一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。
数据应用层ADS
数据应用层:Application Data Service,ADS;该层主要是提供给数据产品和数据分析使用的数据,一般会存放在ES、Redis、PostgreSql等系统中供线上系统使用;也可能存放在hive或者Druid中,供数据分析和数据挖掘使用,比如常用的数据报表就是存在这里的。
事实表 Fact Table
事实表是指存储有事实记录的表,比如系统日志、销售记录等。事实表的记录在不断地增长,比如电商的商品订单表,就是类似的情况,所以事实表的体积通常是远大于其他表。
维表层Dimension
维度表(Dimension Table)或维表,有时也称查找表(Lookup Table),是与事实表相对应的一种表;它保存了维度的属性值,可以跟事实表做关联,相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。维度表主要是包含两个部分:
高基数维度数据:一般是用户资料表、商品资料表类似的资料表,数据量可能是千万级或者上亿级别
低基数维度数据:一般是配置表,比如枚举字段对应的中文含义,或者日期维表等;数据量可能就是个位数或者几千几万。
常见的维度表有:日期表(存储与日期对应的周、月、季度等的属性)、地点表(包含国家、省/州、城市等属性)等。